The US Is The Largest Market For Ophthalmic Diagnostic Equipment

The US represents the largest market globally for ophthalmic diagnostic equipment in terms of revenue generated. The US ophthalmic diagnostic equipment market was valued at $190.7m in 2010 and is estimated to grow at a CAGR of 4{0730eed075b45d9e50c00d6cd42dd08773e0164f29a45151808bf89051290974} over 2010-2017. Easy accessibility and availability of new medical equipment to patients, the availability of reimbursement for the coverage of eye care screening as well as the increasing incidence of eye conditions and related disorders are the major factors driving growth in the market.

OCT is the largest segment, accounting for $49.5m in 2010. OCT will remain the fastest growing segment that some experts predict will exhibit a growth rate as high as 8{0730eed075b45d9e50c00d6cd42dd08773e0164f29a45151808bf89051290974} over the next seven years. New innovations in fundus cameras are also expected to drive sales in the US market as well.

At Laser Locators we carry the top name surgical and diagnostic ophthalmic equipment manufacturers you can trust, like Acon, Nidek, Lumenis and more for preforming all of your precise ophthalmic procedures. Contact us at www.laserlocators.com  or call 1-877-924-2020 and let one of our expert equipment locators help you today

New study Offers Hope for More Effective Treatment of Myopia

Research by an optometrist at the University of Houston (UH) supports the continued investigation of optical treatments that attempt to slow the progression of nearsightedness in children.

Conducted by UH College of Optometry assistant professor David Berntsen and his colleagues from The Ohio State University, the study compared the effects of wearing and then not wearing progressive addition lenses, better known as no-line bifocals, in children who are nearsighted. With funding by a National Institutes of Health National Eye Institute training grant and support from Essilor of America Inc. and the American Optometric Foundation Ezell Fellowship program, the study examined 85 children from 6-11 years old over the course of two years. The results were published in Investigative Ophthalmology and Visual Science, one of the most widely read journals in the field.

Selected according to their eye alignment and accuracy of focusing on near objects, the myopic children were fitted with either normal single-vision lenses or no-line bifocals to correct their nearsightedness. In addition to observing and testing the children, the doctors obtained feedback from parents and guardians of both the children’s outdoor activities and near-work tasks, such as reading and computer use.

Previous research suggested that nearsighted children who do not focus accurately when reading books or doing other near work may benefit more from wearing no-line bifocal glasses than nearsighted children who focus more accurately. Berntsen’s study found a small, yet statistically significant, slowing of myopia progression in children wearing the bifocals compared to those who simply wore single-vision lenses. Berntsen asserts, however, that the results do not suggest that children be fitted with no-line bifocal lenses solely for the purpose of slowing the progression of myopia.

“While the small effect found in the group of children wearing bifocal spectacles does not warrant a change in clinical practice, we found the beneficial effect was still present for at least one year after children stopped wearing no-line bifocal lenses,” Berntsen said. “This is promising if other optical lens designs can be developed that do an even better job of slowing how fast myopia increases in children.”

By understanding why different types of lenses result in the slowing of myopia progression, Berntsen says researchers will be better able to design lenses that may be more effective in slowing the increase of nearsightedness in children.

“Single-vision lenses are normally prescribed when a child gets a pair of glasses, but glasses with progressive addition lenses were shown to slightly reduce myopic progression in our study,” Berntsen said. “For any treatment that reduces myopia progression in children to be useful, the effect of the spectacles or contact lenses must persist after children stop wearing them. The fact that the small treatment effect from our study was still present one year after discontinuing the treatment is promising. The results suggest that if newer optical designs currently being investigated do a better job of slowing myopia progression, the effects may be expected to persist and decrease how nearsighted the child ultimately becomes.”

An important goal of this study, in particular, was to help them improve their understanding of the mechanism behind myopia progression in children and why no-line bifocals cause this small reduction in its progression. Berntsen says the study results and evidence from other studies suggest that lenses specifically designed to change blur in the eye’s peripheral vision may be able to slow the increase of nearsightedness.

“There is support for continuing to investigate new lenses specially designed to change the blur profile on the back of the eye in order to reduce the increase of myopia in children,” Berntsen said. “There is still further research to be done, but our work is an important step in discovering the methods needed to slow the progression of nearsightedness.”

At Laser Locators we carry the top name surgical and diagnostic ophthalmic equipment manufacturers you can trust, like Acon, Nidek, Lumenis and more for preforming all of your precise ophthalmic procedures. Contact us at www.laserlocators.com  or call 1-877-924-2020 and let one of our expert equipment locators help you today.

The next LASIK Flap

Horizontally oval flaps match the shape of the most common ablation pattern for astigmatic correction. And while the conventional round flap works well, oval flaps represent an opportunity to improve the LASIK procedure. They better conform to the natural anatomical shape of the cornea and allow for better alignment of the flap. The horizontally oval flap matches the horizontally oval ablation pattern that is created for the majority of myopic corrections.

In a study conducted the average outermost horizontal measurement was 12.0 ±0.5 mm, and the average outermost vertical measurement was 11.1 ±0.4 mm. These dimensions demonstrate that the cornea is an 8{0730eed075b45d9e50c00d6cd42dd08773e0164f29a45151808bf89051290974} horizontal ellipse and that oval flaps are a better anatomical match for the cornea, because they symmetrically fit into the horizontally oval shape of the normal cornea. Round flaps can rotate when they are repositioned, causing striae. In contrast, because oval flaps can only fit into one orientation, the possibility of rotation is eliminated and ensures perfect alignment.

Round flaps invade a greater degree of peripheral vital lamellar fibers and nerves superiorly and inferiorly compared with oval flaps, which preserve peripheral fibers and nerves symmetrically. Also, fewer cuts are made vertically on the cornea with oval flaps. Because it is equidistant to the limbus from all locations, an oval flap lends itself to more symmetrical healing than a round flap. The hinge can be made along the long axis of an oval flap. This creates a wider hinge and better exposure of the stromal bed compared with round flaps, and with an oval flap, the hinge need not be ablated.

The iFS Femtosecond Laser to create a flap that is 100 μm deep with inverted 110º side cuts. My preference for making an oval flap is a 5{0730eed075b45d9e50c00d6cd42dd08773e0164f29a45151808bf89051290974} “oversized” flap set with an 8.2-mm vertical default. I find that the setting provides an 8.6-mm horizontal measurement that fits the average cornea well. I place the pocket in the superior location, as this puts both the pocket and the hinge in the visually insignificant area of cornea masked by the upper eyelid.

Based on the research the iFS Femtodecond Laser was used to treat the vast majority of LASIK patients , and they will greatly benefit from horizontally oval flaps, which correspond to horizontally oval ablation patterns for the treatment of WTR and oblique astigmatism. Oval flaps are anatomically compatible with the cornea, and they allow refractive surgeons to achieve perfect alignment of the flap.

At Laser Locators we carry the top name surgical and diagnostic ophthalmic equipment manufacturers you can trust, like Acon, Nidek, Lumenis and more for preforming all of your precise ophthalmic procedures. Contact us at www.laserlocators.com  or call 1-877-924-2020 and let one of our expert equipment locators help you today.